Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

نویسندگان

  • Melina Zourelidou
  • Birgit Absmanner
  • Benjamin Weller
  • Inês CR Barbosa
  • Björn C Willige
  • Astrid Fastner
  • Verena Streit
  • Sarah A Port
  • Jean Colcombet
  • Sergio de la Fuente van Bentem
  • Heribert Hirt
  • Bernhard Kuster
  • Waltraud X Schulze
  • Ulrich Z Hammes
  • Claus Schwechheimer
چکیده

The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell polarity signaling: focus on polar auxin transport.

Polar auxin transport, which is required for the formation of auxin gradients and directional auxin flows that are critical for plant pattern formation, morphogenesis, and directional growth response to vectorial cues, is mediated by polarized sub-cellular distribution of PIN-FORMED Proteins (PINs, auxin efflux carriers), AUX1/AUX1-like proteins (auxin influx facilitators), and multidrug resist...

متن کامل

Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants

Plant growth flexibly adapts to environmental conditions, implying cross-talk between environmental signalling and developmental regulation. Here, we show that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen-activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well-characterised AGC kinase PINOID, which regulates the polar loca...

متن کامل

The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana.

The phytohormone auxin is a major determinant of plant growth and differentiation. Directional auxin transport and auxin responses are required for proper embryogenesis, organ formation, vascular development, and tropisms. Members of several protein families, including the PIN auxin efflux facilitators, have been implicated in auxin transport; however, the regulation of auxin transport by signa...

متن کامل

PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis.

The phytohormone auxin plays a major role in embryonic and postembryonic plant development. The temporal and spatial distribution of auxin largely depends on the subcellular polar localization of members of the PIN-FORMED (PIN) auxin efflux carrier family. The Ser/Thr protein kinase PINOID (PID) catalyzes PIN phosphorylation and crucially contributes to the regulation of apical-basal PIN polari...

متن کامل

Regulation of Auxin Response by the Protein Kinase PINOID

Arabidopsis plants carrying mutations in the PINOID (PID) gene have a pleiotropic shoot phenotype that mimics that of plants grown on auxin transport inhibitors or of plants mutant for the auxin efflux carrier PINFORMED (PIN), with defects in the formation of cotyledons, flowers, and floral organs. We have cloned PID and find that it is transiently expressed in the embryo and in initiating flor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014